

HOK YAU CLUB HONG KONG MOCK EXAMINATION 2015/16

MATHEMATICS Compulsory Part PAPER 2

 $12.00 \text{ nn} - 1.15 \text{ pm} \quad (1\% \text{ hours})$

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should first stick a barcode label and insert the information required in the spaces provided. No extra time will be given for sticking on the barcode label after the 'Time is up' announcement.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

©學友社 保留版權 Hok Yau Club All Rights Reserved 2015

Not to be taken away before the end of the examination session

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

- 1. $3a^2(a+a) =$
 - A. $3a^4$.
 - B. $6a^3$.
 - C. $9a^3$.
 - D. $3a^3 + 3a^2$.
- 2. $u^2 + 2u 2uv 4v =$
 - A. (u+2v)(u+2).
 - B. (u+2v)(u-2).
 - C. (u-2v)(u+2).
 - D. (u-2v)(u-2).
- 3. If $x^2 6x + 1 \equiv (x+a)^2 + b$, then a+b=
 - A. -11.
 - B. 3.
 - C. 5.
 - D. 8.

- 4. 0.03654941 =
 - A. 0.04 (round off to 1 decimal place).
 - B. 0.037 (round down to 2 significant figures).
 - C. 0.0366 (round up to 3 decimal places).
 - D. 0.036550 (round up to 5 significant figures).
- 5. Let k be a non-zero constant. If the quadratic equation $kx^2 + kx + 1 = k$ has equal real roots, then k = 1
 - A. –4.
 - B. $-\frac{1}{2}$
 - C. $\frac{4}{5}$
 - D. 4.
- 6. The solution of 8+3x>2 or 3-2x<13 is
 - A. x > -5.
 - B. x > -2.
 - C. x < -5 or x > -2.
 - D. any real number.
- 7. The figure shows the graph of $y = -x^2 + ax + b$, where a and b are constants. Which of the following is true?
 - A. a > 0 and b > 0
 - B. a > 0 and b < 0
 - C. a < 0 and b > 0
 - D. a < 0 and b < 0

- 8. Let k be a constant. Solve the equation (x+k-1)(x-k+1) = x-k+1.
 - A. x = 1 k
 - B. x = 2 k
 - C. x = 1 k or x = k 1
 - D. x = 2 k or x = k 1
- 9. Let $f(x) = x^{2015} 3x + k$, where k is a constant. If f(x) is divisible by x + 1, find the remainder when f(x) is divided by 1 x.
 - A. –4
 - B. –2
 - C. 0
 - D. 4
- 10. If the perimeter of an equilateral triangle is increased by 20%, then the area of the triangle is increased by
 - A. 20%.
 - B. 40%.
 - C. 44%.
 - D. 60%.
- 11. A sum of \$60 000 is deposited at an interest rate of 6% per annum for 2 years, compounded monthly. Find the amount correct to the nearest dollar.
 - A. \$67 200
 - B. \$67 416
 - C. \$67 530
 - D. \$67 630

- 12. If 2a:3b:4c=1:3:5, then a:b:c=
 - A. 1:2:10.
 - B. 2:4:5.
 - C. 2:9:20.
 - D. 4:9:10.
- 13. It is given that z varies directly as x and inversely as y^2 . If x is decreased by 10% and y is increased by 20%, then z
 - A. is decreased by 37.5%.
 - B. is decreased by 62.5 %.
 - C. is increased by 37.5%.
 - D. is increased by 62.5%.
- 14. Let a_n be the *n*th term of a sequence. If $a_2 = 4$, $a_4 = 28$ and $a_{n+2} = (a_{n+1})(a_n)$ for any positive integer *n*, then $a_6 =$
 - A. 7.
 - B. 112.
 - C. 196.
 - D. 5488.
- 15. In the figure, the square DEFG is inscribed in the right-angled isosceles triangle ABC. If the area of the square DEFG is $96 \, \mathrm{cm}^2$, then the area of ΔABC is
 - A. $120 \,\mathrm{cm}^2$.
 - B. $144 \, \text{cm}^2$.
 - C. $192 \, \text{cm}^2$.
 - D. 216cm².

16. In the figure, ABCD is a rhombus with side length ℓ cm and ABD is a sector. It is given that $\angle BAD = 60^{\circ}$. Find the area of the shaded region.

B.
$$\left(\frac{\sqrt{3}}{2} - \frac{\pi}{6}\right) \ell^2 \text{ cm}^2$$

$$C. \qquad \left(\sqrt{3} - \frac{\pi}{12}\right)\ell^2 \text{ cm}^2$$

D.
$$\left(\sqrt{3} - \frac{\pi}{6}\right)\ell^2 \text{ cm}^2$$

17. In the figure, the solid consists of a right circular cone and a hemisphere with a common base. The base radius and the curved surface area of the cone are $6 \, \text{cm}$ and $60 \pi \, \text{cm}^2$ respectively. Find the volume of the solid.

A.
$$240\pi \,\text{cm}^3$$

B.
$$264\pi \,\text{cm}^3$$

C.
$$384\pi \,\text{cm}^3$$

D.
$$408\pi \,\text{cm}^3$$

18. In the figure, D and E are points lying on the sides AB and BC of $\triangle ABC$ respectively. DFEB is a parallelogram. DF and AC intersect at G, FE and AC intersect at H. It is given that D is the mid-point of AB and DG: GF = 3:2. If the area of $\triangle ADG$ is $36 \, \mathrm{cm}^2$, then the area of pentagon BDGHE is

A.
$$96 \, \text{cm}^2$$
.

B.
$$104 \, \text{cm}^2$$
.

D.
$$120 \,\mathrm{cm}^2$$
.

6

- 19. In the figure, *OABC* is a square, where $\theta = 63^{\circ}$. Find the bearing of A from C.
 - A. S 72° E
 - B. S108° E
 - C. N 72° W
 - D. N82° W

- 20. $\frac{\sin 210^{\circ}}{\cos (360^{\circ} \theta) 1} + \frac{\cos 240^{\circ}}{1 \sin (270^{\circ} \theta)} =$
 - A. $\frac{1}{\sin^2 \theta}$
 - B. $\frac{\sin \theta}{\tan \theta}$.
 - C. $\frac{\sin \theta}{\tan^2 \theta}$
 - D. $\frac{1}{\sin\theta\tan\theta}$
 - 21. In the figure, O is the centre of the circle. It is given that $\angle PRQ = 36^{\circ}$ and PQ = PR. Find $\angle OQR$.
 - A. 16°
 - B. 18°
 - C. 20°
 - D. 24°

- 22. If an interior angle of a regular polygon is greater than an exterior angle of the polygon by 140°, which of the following are true?
 - I. Each exterior angle of the polygon is 40° .
 - II. The number of diagonals of the polygon is 135.
 - III. The number of folds of rotational symmetry of the polygon is 18.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 23. The polar coordinates of the point P are $(6,210^\circ)$. If P is rotated anticlockwise about the origin through 90° , then the rectangular coordinates of its image are
 - A. $(-3\sqrt{3}, 3)$.
 - B. $(-3, 3\sqrt{3})$.
 - C. $(3, -3\sqrt{3})$.
 - D. $(3\sqrt{3}, -3)$.
- 24. The coordinates of the points A and B are (0,3) and (4,0) respectively. If P is a moving point in the rectangular coordinate plane such that $AP \perp BP$, which of the following is/are true?
 - I. The locus of P is the perpendicular bisector of AB.
 - II. The locus of P is the circle with AB as a diameter.
 - III. The locus of P passes through the origin.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

25. In the figure, the equations of the straight lines L_1 and L_2 are x + ay = b and x + cy = d respectively. Which of the following are true?

III.
$$b < d$$

IV. ad > bc

26. The equation of the circle C is $x^2 + y^2 - 8x + ay + k = 0$, where a and k are constants. Given that a straight line 2x - y - 11 = 0 cuts C into two equal parts and the radius of C is equal to 3. Find k.

27. There are four cards numbered 2, 5, 6 and 8 in a bag. If two cards are randomly drawn from the bag, find the probability that the difference of the numbers drawn is a multiple of 3.

A.
$$\frac{1}{2}$$

B.
$$\frac{1}{3}$$

C.
$$\frac{1}{4}$$

D.
$$\frac{1}{6}$$

- 28. The figure below shows the frequency curves of two Mathematics test score distribution A and B of a class. If two curves are symmetrical distribution, which of the following are true?
 - I. Mode of B > Mode of A
 - II. Median of B > Median of A
 - III. Standard deviation of B >Standard deviation of A

- B. I and III only
- C. II and III only
- D. I, II and III

- 29. Consider the following data: 8, 11, 14, 12, 8, 10, 10, 9, 13, p and q, where p and q are integers with p < q. Given that both the mean and the median of the above data are 11. How many pairs of possible values of p and q are there?
 - A. 2
 - B. 3
 - C. 4
 - D. 5
- 30. The stem-and-leaf diagram below shows the scores of 10 students in a Mathematics test. If the mean of the score is 73 marks, find the possible values of x and y.

Stem (10 marks)	Leaf (1 mark)				
6	5	5	7	9	
7	3	3	x	5	
8	4	у			

- A. x = 3, y = 5
- B. x = 3, y = 6
- C. x = 4, y = 6
- D. x = 5, y = 5

Section B

31. The L.C.M. of $x^2 + 3x - 10$ and $x^3 - 4x^2 + 4x$ is

- A. x-2.
- B. $(x-2)^2$.
- C. x(x+5).
- D. $x(x+5)(x-2)^2$.

32.

The figure above shows the linear relation between x and $\log_3 y$. Which of the following graphs may represent the relation between x and y?

A.

B.

C.

D.

- 33. In the hexadecimal number AF, the place value of 'A' is
 - A. 10.
 - B. 16.
 - C. 160.
 - D. 175.
- 34. Given that α and β are the roots of the quadratic equation $4x^2-8x+1=0$. Find the value of $\log_2\alpha+\log_2\beta$.
 - A. –2
 - B. $-\frac{1}{2}$
 - C. 1
 - D. 2
- 35. Consider the following system of inequalities:

$$\begin{cases} x \le 3 \\ y \ge -1 \\ 4x + y \ge 3 \\ 2x + 3y \le 9 \end{cases}$$

- Let R be the region which represents the solution of the above system of inequalities. If (x, y) is a point lying in R, then the minimum value of 3x+2y-5 is
 - A. –4.
 - B. 1.
 - C. 2.
 - D. 6.

- 36. Let $z = (a+3)i^{4n+1} (a-6)i^{4n+2}$, where *n* is a positive integer and *a* is a real number. If *z* is a pure imaginary number, then a =
 - А. –6.
 - В. –3.
 - C. 3.
 - D. 6.
- 37. Which of the following may represent the graph of y = f(x) and the graph of y = f(x+1)+1 on the same rectangular coordinate system?

A.

B.

C.

D.

- 38. If the sum of the first n terms of an arithmetic sequence is $-2n^2 + n$, then the 13th term of the sequence is
 - A. -325.
 - В. –53.
 - C. –49.
 - D. 53.

39. Let k be a constant and $-90^{\circ} < \theta < 90^{\circ}$. If the figure shows the graph of $y = k \cos(x^{\circ} + \theta)$, then

B.
$$k=2$$
 and $\theta=-40^{\circ}$.

C.
$$k = -2$$
 and $\theta = 40^{\circ}$.

D.
$$k = -2$$
 and $\theta = -40^{\circ}$.

40. The figure shows a right pyramid VABCD with a square base ABCD. Given that AB = 4 and VA = 6. Find the angle between the plane VAB and the plane VCD.

41. In the figure, O is the circumcentre of $\triangle ABC$. It is given that $\angle BOC = 122^{\circ}$. Find $\angle A$.

D. 64°

42. A circle intersects the x-axis at P and Q with PQ = 8. If the coordinates of the centre of the circle are (7,3), then the equation of the circle is

A.
$$x^2 + y^2 - 14x - 6y + 33 = 0$$
.

B.
$$x^2 + y^2 - 14x - 6y + 42 = 0$$
.

C.
$$x^2 + y^2 + 14x + 6y + 33 = 0$$
.

D.
$$x^2 + y^2 + 14x + 6y + 42 = 0$$
.

- 43. Four digits are chosen from the seven digits 0 , 1 , 2 , 3 , 4 , 5 and 6 without repetition. How many four-digit even number can be formed?
 A. 300
 B. 400
 - C. 420D. 480
- 44. There are four boxes, in which one of them contains a diamond ring. The boxes are being opened one by one. Find the probability that the diamond ring can be found without opening all the four boxes.
 - A. $\frac{1}{4}$
 - B. $\frac{1}{2}$
 - C. $\frac{2}{3}$
 - D. $\frac{3}{4}$
- 45. A set of data consists of a datum with the same value to the mean. If this datum is removed from the set, which of the following must be true?
 - I. Mean remains unchanged.
 - II. Median will not decrease.
 - III. Variance will not decrease.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

END OF PAPER