HOK YAU CLUB HONG KONG MOCK EXAMINATION 2016/17

MATHEMATICS Compulsory Part PAPER 2

12.00 nn - 1.15 pm (1% hours)

INSTRUCTIONS

- Read carefully the instructions on the Answer Sheet. After the announcement of the start of the
 examination, you should first stick a barcode label and insert the information required in the spaces
 provided. No extra time will be given for sticking on the barcode label after the 'Time is up'
 announcement.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

©學友社 保留版權 Hok Yau Club All Rights Reserved 2016

Not to be taken away before the end of the examination session

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

1.
$$(-3)^{2017} (\frac{1}{9})^{1009} =$$

B.
$$-\frac{1}{3}$$
.

C.
$$-\frac{1}{9}$$
.

D.
$$\frac{1}{3}$$

2.
$$(x-2)(x^2-2x+4) =$$

A.
$$x^3 - 8$$
.

B.
$$(x-2)^3$$
.

C.
$$x^3 - 4x^2 + 8x - 8$$
.

D.
$$x^3 + 4x^2 - 8x - 8$$
.

3. If
$$2m+n+1=m-2n+5=-1$$
, then $m+n=$

- 4. If 0.74496 < x < 0.74505, which of the following must be true?
 - A. x = 0.8 (correct to 1 significant figure).
 - B. x = 0.74 (correct to 2 decimal places).
 - C. x = 0.745 (correct to 3 significant figures).
 - D. x = 0.7450 (correct to 4 decimal places).
- 5. If p and q are constants such that $(x+2)^2 + p \equiv (x-1)(x+q) + 3$, then p =
 - A. 5.
 - B. -2.
 - C. –4.
 - D. -6.
- 6. The solution of -2x+5<13<5x-2 is
 - A. x > -4.
 - B. x > 3.
 - C. -4 < x < 3.
 - D. x < -4 or x > 3.
- 7. If the roots of the equation $2x^2 x + k = 0$ are -1 and β , then $11 + 2\beta 4\beta^2 =$
 - A. 5.
 - B. 9.
 - C. 13.
 - D. 17.

8. The figure shows the graph of $y = px^2 + qx - 5$, where p and q are constants. Which of the following is true?

B.
$$p > 0$$
 and $q < 0$

C.
$$p < 0$$
 and $q < 0$

D.
$$p < 0$$
 and $q > 0$

- 9. The weight of Sunny is 20 % heavier than that of Clara and 20 % lighter than that of Kenny. Then
 - A. Kenny is 20% heavier than Sunny.
 - B. Kenny is 40% heavier than Clara.
 - C. Clara is 50% lighter than Kenny.
 - D. Kenny is 50% heavier than Clara.
- 10. \$ 50 000 is deposited at an interest rate of 2.4 % per annum, compounded half-yearly for 3 years. Another \$ 50 000 is deposited at a simple interest rate of 2.5 % per annum for 3 years. Find the difference between the two interests obtained correct to the nearest dollar.

11. Let a, b and c are non-zero numbers. If $\frac{1}{2}a = 2b = 3c$, then $\frac{1}{a}:\frac{1}{b}:\frac{1}{c}=$

4

- 12. It is given that z varies directly as the square of x and inversely as y. If x is increased by 20% and y is decreased by 25%, then z
 - A. is increased by 8%.
 - B. is increased by 60%.
 - C. is increased by 92 %.
 - D. is decreased by 10%.
- 13. In the figure, the 1st pattern consists of 3 dots. For any positive integer n, the (n+1)th pattern is formed by adding n+3 dots to the nth pattern. Find the number of dots in the 6th pattern.
 - A. 19
 - B. 25
 - C. 33
 - D. 42
- 14. There is a bag of salt. The weight of salt in the bag is measured as 8 kg correct to the nearest kg. If the bag of salt is packed into n packets such that the weight of salt in each packet is measured as 15 g correct to the nearest g, find the least possible value of n.
 - A. 483
 - B. 484
 - C. 517
 - D. 548
- 15. In the figure, ABCDE is a regular pentagon and CDFG is a square, $\angle ABG =$
 - A. 18° .
 - B. 24°.
 - C. 25°.
 - D. 27°.

16. In the figure, E is the mid-point of AC and F is a point lying on AD. If $AB = 20 \,\text{cm}$, $DE = 10 \,\text{cm}$, $FD = 3 \,\text{cm}$ and $CF = 13 \,\text{cm}$, then the area of ΔABC is

C. $160 \, \text{cm}^2$.

D. $192 \, \text{cm}^2$.

17. In the figure, the sector is folded to form a circular cone. Find the volume of the circular cone.

- A. $96\pi \,\text{cm}^3$
- B. $120\pi \, \text{cm}^3$
- C. $288\pi \,\text{cm}^3$
- D. $360\pi \,\text{cm}^3$
- 18. In the figure, ABCD is a parallelogram. E is a point lying on BC such that BE:EC=3:2. If the area of ΔECF is $96\,\mathrm{cm}^2$, then the area of ΔADE is

C. 216cm².

D. $360 \,\mathrm{cm}^2$.

19. In the figure, $\frac{AC}{DB} =$

C.
$$\frac{\tan \alpha}{\sin \beta}$$
.

D.
$$\frac{\tan \alpha}{\cos \beta}$$
.

20.
$$\frac{\cos 0^{\circ} + \cos(90^{\circ} - \theta)}{\sin(90^{\circ} + \theta)} - \frac{\cos(180^{\circ} + \theta)}{1 - \sin(360^{\circ} - \theta)} =$$

A.
$$\frac{\cos\theta}{2}$$
.

B.
$$\frac{2}{\sin \theta}$$
.

C.
$$\frac{2}{\cos \theta}$$
.

D.
$$\frac{2}{\cos\theta(1-\sin\theta)}$$
.

21. In the figure, O is the centre of the circle ABCDE. If $\angle OCD = 46^{\circ}$ and $\angle ABC = 123^{\circ}$, then $\angle AED =$

	I.	Each inter	rior angle of the polygon is 135°.						
	II. The number of diagonals of the polygon is 35.								
	III. The number of folds of rotational symmetry of the polygon is 10.								
		A.	I and II only						
		B.	I and III only						
		C.	II and III only						
		D.	I, II and III						
23.	The rectangular coordinates of the point P are $(1, -\sqrt{3})$. If P is reflected with respect to th x -axis and then rotated clockwise about the origin through 270° , then the polar coordinates of its imagare								
		A.	$(1,120^{\circ})$.						
		B.	$(1,150^{\circ})$.						
		C.	$(2,120^{\circ})$.						
		D.	$(2,150^{\circ})$.						
24.			of the points A and B are $(6,0)$ and $(0,8)$ respectively. If P is a moving agular coordinate plane such that $PA \perp PB$, then the locus of P is						
		A.	the perpendicular bisector of AB .						
		B.	the straight line which passes through A and B .						
		C.	the angle bisector of $\angle AOB$, where O is the origin.						
		D.	the circle with AB as a diameter, excluding the points A and B .						

22. If the sum of the interior angles of a regular polygon is $1\,440^{\circ}$, which of the following are true?

- 25. If straight lines 2x y + 4 = 0 and mx + ny + 2 = 0 are perpendicular to each other at a point on the x-axis, then n = 0
 - A. –2.
 - B. -1.
 - C. 1.
 - D. 2.
- 26. The equation of the circle is $\frac{1}{2}x^2 + \frac{1}{2}y^2 3x + 5y + 9 = 0$. Which of the following are true?
 - I. The coordinates of the centre of the circle are (3, -5).
 - II. The circle and the *y*-axis intersect at two distinct points.
 - III. The origin lies inside the circle.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 27. There are four balls numbered 1, 4, 6 and 15 in a bag. If two balls are randomly drawn from the bag, find the probability that the product of the numbers drawn is *not* a multiple of 3.
 - A. $\frac{1}{6}$
 - B. $\frac{1}{4}$
 - C. $\frac{1}{2}$
 - D. $\frac{5}{6}$

- 28. There are five \$20 paper notes, four \$50 paper notes and one \$500 paper note in a wallet. A paper note is randomly drawn from the wallet. Find the expected value of the paper note.
 - A. 20 dollars
 - B. 50 dollars
 - C. 80 dollars
 - D. 190 dollars
 - 29. The scatter diagram below shows the relation between x and $\frac{1}{y}$. Which of the following represents the relation between x and y?

- 30. Consider the following data:
 - 11 18 12 14 14 20 7 16 10 *p q*

If the mean and the median of the above data both are 14, which of the following must be true?

- I. p+q=32
- II. $p \ge 14$
- III. $q \le 18$
 - A. I only
 - B. I and II only
 - C. I and III only
 - D. I, II and III

Section B

31.
$$\frac{1}{x^2 - 2x + 1} - \frac{1}{x^2 - 1} =$$

- A. 0.
- $B. \qquad \frac{2}{(x-1)(x+1)}.$
- $C. \qquad \frac{2}{(x-1)^2(x+1)} \, .$
- $D. \qquad \frac{2x}{(x-1)^2(x+1)}.$
- 32. The graph in the figure shows the linear relation between x and $\log_{\frac{1}{2}} y$. If $y = ab^x$, then a =

- B. $\frac{1}{4}$
- C. $\frac{1}{2}$
- D. 16.

- 33. $5 \times 2^7 + 2^5 + 17 =$
 - A. 1001110001_2 .
 - B. 1001101001₂.
 - C. 1010101001_2 .
 - D. 1010110001₂.

- 34. Let $u = \frac{i}{a+i}$ and $v = \frac{i}{a-i}$, where a is a real number. Which of the following must be true?
 - I. uv is a real number.
 - The imaginary part of u is equal to the imaginary part of v.
 - III. The real part of $\frac{1}{u}$ is equal to the real part of $\frac{1}{v}$.
 - A. I only
 - B. II only
 - I and II only C.
 - D. II and III only
- Which of the following systems of inequalities will make p = 2x 3y have both maximum and minimum values?

A.
$$\begin{cases} x \ge 0 \\ y \ge 0 \\ 3x - 2y \le 6 \end{cases}$$
C.
$$\begin{cases} x \ge 0 \\ y \ge 0 \\ 3x - 2y \ge 6 \end{cases}$$

B.
$$\begin{cases} x \le 0 \\ y \le 0 \\ 3x - 2y \ge 6 \end{cases}$$

C.
$$\begin{cases} x \ge 0 \\ y \ge 0 \\ 3x - 2y \ge 6 \end{cases}$$

D.
$$\begin{cases} x \ge 0 \\ y \le 0 \\ 3x - 2y \le 6 \end{cases}$$

- 36. Let a, b and c be positive numbers and $b^2 = ac$. Which of the following must be true?
 - I. $\log a$, $\log b$, $\log c$ is an arithmetic sequence.
 - II. 2^a , 2^b , 2^c is a geometric sequence.
 - III. a^m , b^m , c^m is a geometric sequence, where m is a positive integer.
 - I and II only
 - I and III only B.
 - C. II and III only
 - D. I, II and III

- 37. For $0^{\circ} \le x \le 360^{\circ}$, how many roots does the equation $\sin x(3\cos^2 x + 4\cos x 4) = 0$ have?
 - A. 2
 - B. 3
 - C. 4
 - D. 5
- 38. Let a and k be constants and $-90^{\circ} < \theta < 90^{\circ}$. The figure shows the graph of $y = a\cos(x^{\circ} + \theta) + k$. Find the values of a, θ and k.

- A. 2 20°
- B. 2 50°
- C. -2 20° 1
- D. -2 20° 3

- 39. In the figure, PQ is a vertical pole standing on the horizontal ground AQB, where $\angle AQB = 90^{\circ}$. If the angle between the plane PAB and the horizontal plane is θ , then $\tan \theta =$
 - A. $\frac{2}{3}$.
 - B. $\frac{15}{26}$.
 - C. $\frac{8}{5}$.
 - D. $\frac{26}{15}$.

40. In the figure, AB is a diameter of the circle. TP touches the circle at P . ABR and PQR are straight lines. If $\angle ARP = 24^{\circ}$ and $\angle RPT = 44^{\circ}$, then $\angle AQP =$

B. 35°.

C. 46°.

D. 48°.

41. Find the equation of the circle with its centre at the point (3,-1) and touching the straight line 3x+4y+5=0.

A.
$$x^2 + y^2 + 6x - 2y + 6 = 0$$

B.
$$x^2 + y^2 - 6x + 2y + 6 = 0$$

C.
$$x^2 + y^2 - 6x + 2y + 8 = 0$$

D.
$$x^2 + y^2 - 6x + 2y + 9 = 0$$

42. Bag A contains 3 red balls and 2 white balls while bag B contains 2 red balls and 4 white balls. If one ball is randomly drawn from bag A and put into bag B, then one ball is randomly drawn from bag B and put into bag A. Now, a ball is randomly drawn from bag A, the probability of drawing a red ball is

A.
$$\frac{43}{175}$$
.

B.
$$\frac{51}{175}$$

C.
$$\frac{97}{175}$$
.

D.
$$\frac{3}{5}$$
.

- 43. 5 girls and 4 boys sit in a row. If only two boys sit next to each other, find the number of permutation.
 - A. 43 200
 - B. 86 400
 - C. 172 800
 - D. 362 880
- 44. The stem-and-leaf diagram below shows the distribution of the scores (in marks) of a group of students in a test.

Stem (tens)	<u>Leaf (units)</u>				
3	1 2 2 0	6	7	9	
4	2	2	7	8	
5	2	6	6	7	9
6	0	4	4		
7	3	4	8		
8	5				

Which of the following are true?

- I. The inter-quartile range of the distribution is 22 marks.
- II. There is no student with standard score less than -2.
- III. There are 3 students whose standard scores are above 1.3.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 45. The standard deviation of the five numbers -3a+b, -3a+5b, -3a-3b, -3a+9b and -3a-7b, where b>0, is
 - A. $4\sqrt{2}b$.
 - B. $2\sqrt{10}b$.
 - C. $\frac{24}{5}b$.
 - D. 32b.

END OF PAPER